
80
QUESTIONS

Python
tutort academyCurated by

to MASTER

tutort academyCurated by

1Question

What is Python?

List some popular applications of Python in the world of
technology.
Python is a widely-used general-purpose,
high-level programming language. It was created by
Guido
van Rossum in 1991 and further developed by the Python
Software Foundation. It was
designed with an emphasis on
code readability, and its syntax allows programmers to
express
their concepts in fewer lines of code.

System Scripting

Web Development

Game Development

Software Development

Complex Mathematics

It is used for:

tutort academyCurated by

2Question

What are the benefits of using Python
language as a tool in the present scenario?

The following are the benefits of using Python language

System Scripting

Web Development

Game Development

Software Development

Complex Mathematics

Complex Mathematics

Complex Mathematics

Complex Mathematics

Tutort Provides 24x7 Live 1:1 Video based doubt support

tutort academyCurated by

Question 3

Question 4

Question 5

Is Python a compiled language or an
interpreted language?

What does the ‘#’ Symbol in Python?

What is the difference between a Mutable
data type and an Immutable data type?

Actually, Python is a partially compiled language and
partially interpreted language. The
compilation part is
done first when we execute our code and this will generate
byte code internally.
This byte code gets converted by the
Python virtual machine(p.v.m) according to the underlying

platform(machine+operating system).

‘#’ is used to comment on everything that comes after on
the line.

Mutable data types can be edited i.e., they can change
at runtime. Eg – List, Dictionary,
 etc.

Immutable data types can not be edited i.e., they can not
change at runtime. Eg – String,
Tuple, etc.

tutort academyCurated by

Question 6

Question 7

How are arguments passed by value or by
reference in Python?

What is the difference between a Set and
Dictionary?

Everything in Python is an object and all variables hold
references to the objects. The reference
values are
according to the functions; as a result, you cannot
change the value of the references.
However, you can
change the objects if they are mutable.

The set is an unordered collection of data types that is
iterable, mutable and has no
duplicate elements.

A dictionary in Python is an unordered collection of data
values, used to store data values
like a map.

tutort academyCurated by

Question 8

Question 9

What is List Comprehension? Give an
Example.

What is a lambda function?

List comprehension is a syntax construction to ease the
creation of a list based on an existing
iterable.

A lambda function is an anonymous function. This function
can have any number of parameters
but can have just one
statement.

For example -

For example -

my_list = [i for i in range(1, 10)]

a = lambda x, y : x*y

print(a(7, 19))

tutort academyCurated by

Question 10
What is a pass in Python?

Pass means performing no operation or in other words, it
is a placeholder in the compound
statement, where there
should be a blank left and nothing has to be written there.

// represents floor division whereas / represents precise
division.

Question 11
What is the difference between / and // in
Python?

5//2 = 2

5/2 = 2.5

Guaranteed

Job Referrals

Highest

CTC100% Hiring

Partners250+ 2.1CR

One of the best institutes for getting started with DSA and System Design.
It also assisted me in launching my technical career and in honing my
problem-solving and coding abilities. I was placed in more than 6+
product based companies because of their constant support.Avishkar Dalvi

tutort academyCurated by

The beauty of the final block is to execute the code after
trying for an error. This block gets
executed irrespective of
whether an error occurred or not. Finally block is used to
do the
required cleanup activities of objects/variables.

Question 12
How is Exceptional handling done in Python?

There are 3 main keywords i.e. try, except, and finally
which are used to catch exceptions
and handle the
recovering mechanism accordingly. Try is the block of a
code that is
monitored for errors. Except the block gets
executed when an error occurs.

It is a string’s function that converts all uppercase
characters into lowercase and vice versa. It is
used to
alter the existing case of the string. This method creates
a copy of the string which
contains all the characters in
the swap case.

Question 13
What is a swapcase function in Python?

string = "Hello Pune"

string.swapcase() ---> "hELLO pUNE"

tutort academyCurated by

The “while” loop is the actual looping feature that is used
in any other programming
language. Programmers use a
Python while loop where they just have the end
conditions.

Question 14
Difference between for loop and while loop in
Python

The “for” Loop is generally used to iterate through the
elements of various collection types
such as List, Tuple,
Set, and Dictionary. Developers use a “for” loop where
they have both
the conditions start and the end.

Question 15
Can we Pass a function as an argument in
Python?

Yes, Several arguments can be passed to a function,
including objects, variables (of the same or
distinct
data types), and functions. Functions can be passed as
parameters to other functions
because they are
objects. Higher-order functions are functions that can
take other functions as
arguments.

tutort academyCurated by

Question 16

Question 17

What are *args and *kwargs?

Is Indentation Required in Python?

To pass a variable number of arguments to a function
in Python, use the special syntax *args and
**kwargs in
the function specification. It is used to pass a variable-
length, keyword-free argument
list. By using the *, the
variable we associate with the * becomes iterable,
allowing you to do
operations on it such as iterating
over it and using higher-order operations like map and
filter.

Yes, indentation is required in Python. A Python
interpreter can be informed that a group of
statements
belongs to a specific block of code by using Python
indentation. Indentations make the
code easy to read
for developers in all programming languages but in
Python, it is very important
to indent the code in a
specific order.

tutort academyCurated by

Global variables: Global variables are the ones that are
defined and declared outside any
function and are not
specified to any function.

Module-level scope: It refers to the global objects of the
current module accessible in the
program.

Outermost scope: It refers to any built-in names that the
program can call. The name
referenced is located last
among the objects in this scope.

Question 18

What is Scope in Python?

Local variable: Local variables are those that are
initialized within a function and are
unique to that
function. It cannot be accessed outside of the function.

The location where we can find a variable and also
access it if required is called the scope of a
variable.

tutort academyCurated by

Question 19
What is docstring in Python?

Question 20
What is a dynamically typed language?

Python documentation strings (or docstrings) provide a
convenient way of associating
documentation with
Python modules, functions, classes, and methods.

Statically typed languages: In this type of language, the
data type of a variable is known
at the compile time
which means the programmer has to specify the data
type of a variable
at the time of its declaration.

Declaring Docstrings: The docstrings are declared using
”’triple single quotes”’ or “””triple
double quotes””” just
below the class, method, or function declaration. All
functions should
have a docstring.

Accessing Docstrings: The docstrings can be accessed
using the __doc__ method of the
object or using the
help function.

Typed languages are the languages in which we define the type
of data type and it will be known
by the machine at the
compile-time or at runtime. Typed languages can be classified
into two
categories:

tutort academyCurated by

Question 21

What is a break, continue, and pass in
Python?

The break statement is used to terminate the loop or
statement in which it is present. After
that, the control
will pass to the statements that are present after the
break statement, if
available.

Continue is also a loop control statement just like the
break statement. The continue
statement is opposite to
that of the break statement, instead of terminating the
loop, it
forces the execution of the next iteration of the
loop.

Pass means performing no operation or in other words, it
is a placeholder in the compound
statement, where there
should be a blank left and nothing has to be written there.

Dynamically typed languages: These are the languages
that do not require any
pre-defined data type for any
variable as it is interpreted at runtime by the machine
itself. In
these languages, interpreters assign the data
type to a variable at runtime depending on its
value.

tutort academyCurated by

Question 22

What are Built-in data types in Python?

Numeric: The numeric data type in Python represents
the data that has a numeric value. A
numeric value can
be an integer, a floating number, a Boolean, or even a
complex number.

Sequence Type: The sequence Data Type in Python is
the ordered collection of similar or
different data types.
There are several sequence types in Python:

String

List

Tuple

Dictionary

Range

Mapping Types: In Python, hashable data can be mapped
to random objects using a
mapping object. There is
currently only one common mapping type, the dictionary,
and
mapping objects are mutable.

Set: In Python, a Set is an unordered collection of data
types that is iterable, mutable, and
has no duplicate
elements. The order of elements in a set is undefined
though it may
consist of various elements.

The following are the standard or built-in data types in Python:

tutort academyCurated by

Question 23

Question 24

How do you floor a number in Python?

What is the difference between xrange and
range functions?

The Python math module includes a method that can be
used to calculate the floor of a number.
floor() method
in Python returns the floor of x i.e., the largest integer not
greater than x.
ceil(x) in Python returns a ceiling value of
x i.e., the smallest integer greater than or equal to x.

range() and xrange() are two functions that could be
used to iterate a certain number of times in
for loops in
Python. In Python 3, there is no xrange, but the range
function behaves like xrange in
Python 2.

range() – This returns a list of numbers created using
the range() function.

xrange() – This function returns the generator object
that can be used to display numbers
only by looping.
The only particular range is displayed on demand and
hence called lazy
evaluation.

tutort academyCurated by

Question 25
What is Dictionary Comprehension? Give an
Example

Question 26
Is Tuple Comprehension? If yes, how, and if
not why?

Dictionary Comprehension is a syntax construction to
ease the creation of a dictionary based on
the existing
iterable.

Tuple comprehension is not possible in Python because
it will end up in a generator, not a tuple
comprehension.

my_dict = {i:1+7 for i in range(1, 10)}

(i for i in (1, 2, 3))

tutort academyCurated by

Question 27

Differentiate between List and Tuple?

Let’s analyze the differences between List and Tuple:

Lists are Mutable data types.

LISTS TUPLES

Tuples are Immutable data
types.

Lists consume more memory
Tuple consumes less memory
as compared to the list

The implication of iterations is
comparatively Faster

A Tuple data type is appropriate
for accessing the elements

The implication of iterations is
Time-consuming

The list is better for
performing operations, such
as insertion and deletion.

Question 28

What is the difference between a shallow
copy and a deep copy?

Shallow copy is used when a new instance type gets
created and it keeps values that are copied
whereas
deep copy stores values that are already copied.
A
shallow copy has faster program execution whereas a
deep copy makes it slow.

tutort academyCurated by

Question 29
Which sorting technique is used by sort()
and sorted() functions of python?

Question 30
What are Decorators?

Python uses the Tim Sort algorithm for sorting. It’s a
stable sorting whose worst case is O(N log
N). It’s a
hybrid sorting algorithm, derived from merge sort and
insertion sort, designed to perform
well on many kinds
of real-world data.

Decorators in simple terms is the specific change that
we make in Python syntax to alter functions
easily.

Tutort Academy is always ready to provide job assistance in various
organizations such as MNCs and Startups, as well as help you with resume
writing, mock interviews, LinkedIn profile creation, and everything else
related to job search. They make you industry-ready.

Disha Patil

tutort academyCurated by

Question 31
How do you debug a Python program?

In Python, we can use the debugger pdb for debugging
the code. To start
debugging we have to enter the
following lines on the top of a Python script.

import pdb

pdb.set_trace()

After adding these lines, our code runs in debug mode.
Now we can usecommands like breakpoint, step
through, step into etc for debugging.

By using this command we can debug a Python
program:

$ python -m pdb python-script.py

Question 32
What are Iterators in Python?

In Python, iterators are used to iterate a group of
elements, containers like a list. Iterators are
collections of
items, and they can be a list, tuples, or a dictionary.
Python iterator implements
__itr__ and the next()
method to iterate the stored elements. We generally use
loops to iterate
over the collections (list, tuple) in Python.

tutort academyCurated by

Question 33
What are Generators in Python?

In Python, the generator is a way that specifies how to
implement iterators. It is a normal
function except that it
yields expression in the function. It does not implement
__itr__ and
next() method and reduces other
overheads as well.

If a function contains at least a yield statement, it
becomes a generator. The yield keyword
pauses the
current execution by saving its states and then resumes
from the same when

required.

Question 34
Does Python support multiple Inheritance?

Python does support multiple inheritances, unlike Java.
Multiple inheritances mean that a class

can be derived from more than one parent class.

tutort academyCurated by

Question 35

What is Polymorphism and encapsulation in
Python?

Polymorphism means the ability to take multiple forms.
So, for instance, if the parent class
has a method named
ABC then the child class also can have a method with the
same
name ABC having its own parameters and
variables. Python allows polymorphism.

Encapsulation means binding the code and the data
together. A Python class is an
example of encapsulation.

Question 36

What is garbage collection in Python?

A garbage collection in Python manages the memory
automatically and heap allocation. In simpler
terms,
the process of automatic deletion of unwanted or
unused objects to free the memory is
called garbage
collection in Python.

tutort academyCurated by

Question 37

How do you do data abstraction in Python?

Question 38

How is memory management done in
Python?

Data Abstraction is providing only the required details
and hides the implementation from the
world. It can be
achieved in Python by using interfaces and abstract
classes.

Python uses its private heap space to manage the
memory. Basically, all the objects and data
structures are
stored in the private heap space. Even the programmer
can not access this private
space as the interpreter takes
care of this space. Python also has an inbuilt garbage
collector,
which recycles all the unused memory and frees
the memory and makes it available to the heap

space.

tutort academyCurated by

Question 39
How to delete a file using Python?

Question 40
What is slicing in Python?

We can delete a file using Python by following
approaches:

Python Slicing is a string operation for extracting a part
of the string, or some part of a list. With
this operator,
one can specify where to start the slicing, where to end,
and specify the step. List
slicing returns a new list from
the existing list.

os.remove()

os.unlink()

Lst[Initial : End : IndexJump]

tutort academyCurated by

Question 41
What is a namespace in Python?

Question 42
What is PIP?

Question 43
What is a zip function?

A namespace is a naming system used to make sure
that names are unique to avoid naming
conflicts.

PIP is an acronym for Python Installer Package which
provides a seamless interface to install
various Python
modules. It is a command-line tool that can search for
packages over the internet
and install them without
any user interaction.

Python zip() function returns a zip object, which maps a
similar index of multiple containers. It
takes an iterable,
converts it into an iterator and aggregates the
elements based on iterables
passed. It returns an
iterator of tuples.

tutort academyCurated by

Question 44

What are Pickling and Unpickling?

Question 45

How can we do Functional programming in
Python?

The Pickle module accepts any Python object and
converts it into a string representation and
dumps it
into a file by using the dump function, this process is
called pickling.

While the process of retrieving original Python objects
from the stored string representation is
called
unpickling.
Python has a module named pickle. This
module has the implementation of
a powerful
algorithm for serialization and deserialization of Python
object
structure.

In Functional Programming, we decompose a program
into functions. These
functions take input and after
processing give an output. The function does
not
maintain any state.

Python provides built-in functions that can be used for
Functional programming.

tutort academyCurated by

Map()

reduce()

filter()

Question 46
What is __init__() in Python?

Question 47
Write a code to display the current time?

Equivalent to constructors in OOP terminology,
__init__ is a reserved method in Python classes.
The
__init__ method is called automatically whenever a
new object is initiated. This method
allocates memory
to the new object as soon as it is created. This method
can also be used to
initialize variables.

Some of these functions are:

Event iterators and generators can be used for
Functional programming in
Python.

current_time= time.localtime()

print (“Current time is”, current_time)

tutort academyCurated by

Question 48

What are Access Specifiers in Python?

Public Access Modifier: The members of a class that are
declared public are easily
accessible from any part of the
program. All data members and member functions of a

class are public by default.

Protected Access Modifier: The members of a class that
are declared public are easily
accessible from any part of
the program. All data members and member functions of
a
class are public by default.

Private Access Modifier: The members of a class that
are declared private are accessible
within the class only,
the private access modifier is the most secure access
modifier. Data
members of a class are declared private
by adding a double underscore ‘__’ symbol before
the
data member of that class.

Python uses the ‘_’ symbol to determine the access
control for a specific data member or a
member
function of a class. A Class in Python has three types of
Python access modifiers:

tutort academyCurated by

Question 49
What are unit tests in Python?

Question 50
Python Global Interpreter Lock (GIL)?

The Pickle module accepts any Python object and
converts it into a string representation and
dumps it
into a file by using the dump function, this process is
called pickling.

While the process of retrieving original Python objects
from the stored string representation is
called
unpickling.
Python has a module named pickle. This
module has the implementation of
a powerful
algorithm for serialization and deserialization of Python
object
structure.

Python Global Interpreter Lock (GIL) is a type of process
lock that is used by Python whenever it
deals with
processes. Generally, Python only uses only one thread to
execute the set of written
statements. The performance of
the single-threaded process and the multi-threaded
process will
be the same in Python and this is because of
GIL in Python. We can not achieve multithreading in

Python because we have a global interpreter lock that
restricts the threads and works as a single
thread.

tutort academyCurated by

Question 51

What are Function Annotations in Python?

Function Annotation is a feature that allows you to add
metadata to function parameters
and return values. This
way you can specify the input type of the function
parameters and
the return type of the value the function
returns.

Function annotations are arbitrary Python expressions
that are associated with various
parts of functions. These
expressions are evaluated at compile time and have no
life in
Python’s runtime environment. Python does not
attach any meaning to these annotations.
They take life
when interpreted by third-party libraries, for example,
mypy.

Courses Offered by Tutort Academy

Full Stack with
MERN

Learn more

DSA with System
Design

Learn more

tutort academyCurated by

Question 52
What are Exception Groups in Python?

The ExceptionGroup can be handled using a new except*
syntax. The * symbol indicates
that multiple exceptions
can be handled by each except* clause.

ExceptionGroup is a collection/group of different kinds of
Exception. Without creating
Multiple Exceptions we can
group together different Exceptions which we can later
fetch
one by one whenever necessary, the order in which
the Exceptions are stored in the
Exception Group doesn’t
matter while calling them.

try:

raise ExceptionGroup('Example ExceptionGroup', (

TypeError('Example TypeError'),

ValueError('Example ValueError'),

KeyError('Example KeyError'),

AttributeError('Example AttributeError')

))

except* TypeError:

...

except* ValueError as e:

...

except* (KeyError, AttributeError) as e:

...

tutort academyCurated by

Question 53

What is Python Switch Statement

Python has implemented a switch case feature called
“structural pattern matching”. You can
implement this
feature with the match and case keywords. Note that
the underscore symbol is
what you use to define a
default case for the switch statement in Python.

Note: Before Python 3.10 Python didn't support match
Statements.

match term:

case pattern-1:

action-1

case pattern-2:

action-2

case pattern-3:

action-3

case _:

action-default

tutort academyCurated by

Question 54
What is the improvement in the enumerate()
function of Python?

Question 55
uses and benefits of python

In Python, enumerate() function is an improvement
over regular iteration.

The enumerate() function returns an iterator that gives
(0, item[0]).

>>> thelist=['a','b']

>>> for i,j in enumerate(thelist):

... print i,j

...

0 a

1 b

High readability

reduces cost of program maintenance

open source

support third party packages modularity

code reverse.

tutort academyCurated by

Question 56
Dynamically typed language?

Typing refers to type checking in programming
language
storing type language such as a Python 1 + 2
will result in type error since this language don't
allow for
“type coercion” (implicit conversion of data types) on
the other hand
a weekly type data weakly typed
language such as JS will simply output 12 to a result
Two
stage of a Typing-checking

Static- data types are checked before execution.

dynamic- data type are checked during execution

Tutort Benefits

24x7 Live 1:1 Video based

doubt support

1:1 Mentorship from

Industry experts

Resume building & Mock

Interview Preparations

Special support for

foreign students

tutort academyCurated by

Question 57
What is self in code?

self represents the instances of class . These handy
keywords allow you to access the variables,
attributes
and methods of a defined class in Python.
Self
parameter doesn't have to be you named ‘self’ as you
can call it by any other home however
the self
parameter must always be the first parameter of any
class function
regardless of a name choose chosen so
instead of selfie you call you ‘mine’ or ‘ours’ or anything

else

Class address:

def __init__(mine,street,number):

Mine.street = street

Mine.number = number

Def myfunc(abc):

print(“my address is “ abc,street)

P1 = address(“Albert street”,20)

p1.myfunc()

tutort academyCurated by

Question 58
What is comprehension in Python?

It provide us with the short and a concise way to
construct a new sequences

[such as a list set dictionary etc]

using sequences which have been already defined
Python supports
four types of a comprehension

A. List comprehension-

it provide an elegant way to create a new list.The
following is the basic structure of a list
comprehension

output list= [output_execution for var in input_list if
(var satisfy this condition)]

Note - list comprehension may or may not contain and if
condition list comprehension can
contain multiple for
nested list conference comprehension

list comprehension

set comprehension

dictionary comprehension

generator comprehension

tutort academyCurated by

1. example one suppose we want to create an output list
which contains only the even number
which are present
in the input list let's see how to do this using for loops and
list comprehension
and decide which method suits better

2. Suppose we want to create an output list which
contains squares of all the numbers from 1 to 9
let's see
how to do this using for loops and list comprehension

Output = output list using for loop : [2 4 4 6]

output = output list using for loop : [1 4 9 16 25 36 49 64 81]

#without using list comprehension

Input_list = [1, 2, 3, 4, 4, 5, 6, 7,7]

Output_list=[]

#look for constructing output

for var in input_list:

If var % 2 ==0:

Output_list.append(var)

print(“Output list using for loop, output_list)

Constructing output list using for loop

output list is equal to[]

for war in range(1, 10):

output_list.append(var ** 2):

print(“Output list using for loops: “,output_list)

tutort academyCurated by

output = output list using for comprehension:

 [1 4 9 16 25 36 49 64 81]

#using list comprehension

list_using_comprehension=[var * 2 for var in
range(1,10)]

print(“Output list using for loops: “,
list_using_comprehension)

output_dict = {key:value for (key, value) in
iterable if (key, value satisfy this condition)}

B. Dictionary comprehension
Extending the idea of list comprehensions, we can also
create a dictionary using dictionary
comprehensions.
The basic structure of a dictionary comprehension looks
like below.

Example #1: Suppose we want to create an output
dictionary which contains only the odd
numbers that
are present in the input list as keys and their cubes as
values. Let’s see how to do
this using for loops and
dictionary comprehension.

tutort academyCurated by

input_list = [1, 2, 3, 4, 5, 6, 7]

output_dict = {}

Using loop for constructing output dictionary

for var in input_list:

if var % 2 != 0:

output_dict[var] = var**3

print("Output Dictionary using for loop:", output_dict)

Using Dictionary comprehensions

for constructing output dictionary

input_list = [1,2,3,4,5,6,7]

dict_using_comp = {var:var ** 3 for var in input_list if
var % 2 != 0}

print("Output Dictionary using dictionary
comprehensions:", dict_using_comp)

Output: Output Dictionary using for loop:

{1: 1, 3: 27, 5: 125, 7: 343}

Output: Output Dictionary using dictionary
comprehensions: {1: 1, 3: 27, 5: 125, 7: 343}

Example #2: Given two lists containing the names of
states and their corresponding capitals,
construct a
dictionary which maps the states with their respective
capitals. Let’s see how to do this
using for loops and
dictionary comprehension.

tutort academyCurated by

state = ['Gujarat', 'Maharashtra', 'Rajasthan']

capital = ['Gandhinagar', 'Mumbai', 'Jaipur']

output_dict = {}

Using loop for constructing output dictionary

for (key, value) in zip(state, capital):

output_dict[key] = value

print("Output Dictionary using for loop:", output_dict)

Using Dictionary comprehensions

for constructing output dictionary

state = ['Gujarat', 'Maharashtra', 'Rajasthan']

capital = ['Gandhinagar', 'Mumbai', 'Jaipur']

dict_using_comp = {key:value for (key, value) in
zip(state, capital)}

print("Output Dictionary using dictionary
comprehensions:", dict_using_comp)

Output Output Dictionary using for loop: {'Gujarat':
'Gandhinagar', 'Maharashtra': 'Mumbai',
'Rajasthan': 'Jaipur'}

Output: Output Dictionary using dictionary
comprehensions: {'Rajasthan': 'Jaipur', 'Maharashtra':

'Mumbai', 'Gujarat': 'Gandhinagar'}

tutort academyCurated by

C. set comprehension:

Set comprehensions are pretty similar to list
comprehensions. The only difference between them
is that
set comprehensions use curly brackets { }. Let’s look at the
following example to
understand set comprehensions.

Output: Output Set using for loop: {2, 4, 6}

Example #1 : Suppose we want to create an output set
which contains only the even numbers that
are present in
the input list. Note that set will discard all the duplicate
values. Let’s see how we
can do this using for loops and set
comprehension.

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

output_set = set()

Using loop for constructing output set

for var in input_list:

if var % 2 == 0:

output_set.add(var)

print("Output Set using for loop:", output_set)

tutort academyCurated by

Using Set comprehensions

for constructing output set

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

set_using_comp = {var for var in input_list if var % 2
== 0}

print("Output Set using set
comprehensions:",set_using_comp)

Output: Output Set using set comprehensions: {2, 4, 6}

D. generator comprehension

Generator Comprehensions are very similar to list
comprehensions. One difference between them
is that
generator comprehensions use circular brackets
whereas list comprehensions use square
brackets. The
major difference between them is that generators don’t
allocate memory for the
whole list. Instead, they generate
each value one by one which is why they are memory
efficient.

Let’s look at the following example to understand
generator comprehension:

tutort academyCurated by

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

output_gen = (var for var in input_list if var % 2 ==
0)

print("Output values using generator
comprehensions:", end = ' ')

for var in output_gen:

print(var, end = ' ')

Output: Output values using generator comprehensions:

 2 4 4 6

Courses Offered by Tutort Academy

Full Stack Data
Science

(AI & ML)

Data Science &
Machine Learning

Learn more Learn more

Full Stack with
MERN

Learn more

DSA with System
Design

Learn more

tutort academyCurated by

Question 59
What is a decorator?

A decorator is a design pattern in Python that allows a
user to add new functionality to an existing
object
without modifying its structure. Decorators are usually
called before the definition of a
function you want to
decorate.

● Assigning Functions to Variables

To kick us off we create a function that will add one to a
number whenever it is called. We'll then
assign the
function to a variable and use this variable to call the
function.

Output:- 6

def plus_one(number):

return number + 1

add_one = plus_one

add_one(5)

tutort academyCurated by

● Defining Functions Inside other Functions

Next, we'll illustrate how you can define a function inside
another function in Python. Stay with me,
we'll soon find
out how all this is relevant in creating and understanding
decorators in Python.

● Passing Functions as Arguments to other Functions

Functions can also be passed as parameters to other
functions. Let's illustrate that below.

Output:- 5

Output:- 5

def plus_one(number):

def add_one(number):

return number + 1

result = add_one(number)

return result

plus_one(4)

def plus_one(number):

return number + 1

def function_call(function):

number_to_add = 5

return function(number_to_add)

function_call(plus_one)

tutort academyCurated by

● Functions Returning other Functions

A function can also generate another function. We'll show
that below using an example.

● Nested Functions have access to the Enclosing Function's
Variable Scope

Python allows a nested function to access the outer scope of
the enclosing function. This is a
critical concept in
decorators -- this pattern is known as a Closure.

Output:- ‘hi’

Output:- Some random message

def hello_function():

def say_hi():

return "Hi"

return say_hi

hello = hello_function()

hello()

def print_message(message):

"Enclosing Function"

def message_sender():

"Nested Function"

print(message)

message_sender()

print_message("Some random message")

tutort academyCurated by

● Creating Decorators

With these prerequisites out of the way, let's go ahead
and create a simple decorator that will
convert a
sentence to uppercase. We do this by defining a wrapper
inside an enclosed function.
As you can see it is very
similar to the function inside another function that we
created earlier.

Our decorator function takes a function as an argument,
and we shall, therefore, define a function
and pass it to
our decorator. We learned earlier that we could assign a
function to a variable. We'll
use that trick to call our
decorator function.

Output 'HELLO THERE'

def uppercase_decorator(function):

def wrapper():

func = function()

make_uppercase = func.upper()

return make_uppercase

return wrapper

def say_hi():

return 'hello there'

decorate = uppercase_decorator(say_hi)

decorate()

tutort academyCurated by

However, Python provides a much easier way for us to apply
decorators. We simply use the @
symbol before the function
we'd like to decorate. Let's show that in practice below.

We can use multiple decorators to a single function.
However, the decorators will be applied in the
order that
we've called them. Below we'll define another decorator
that splits the sentence into a
list. We'll then apply the
uppercase_decorator and split_string decorator to a
single function.

● Applying Multiple Decorators to a Single Function

Output 'HELLO THERE'

@uppercase_decorator

def say_hi():

return 'hello there'

say_hi()

def split_string(function):

def wrapper():

func = function()

splitted_string = func.split()

return splitted_string

return wrapper

@split_string

@uppercase_decorator

def say_hi():

return 'hello there'

say_hi()

['HELLO', 'THERE']

tutort academyCurated by

From the above output, we notice that the application of
decorators is from the bottom up. Had we
interchanged
the order, we'd have seen an error since lists don't have
an upper attribute. The
sentence has first been converted
to uppercase and then split into a list.

Output My arguments are: Nairobi, Accra

Cities I love are Nairobi and Accra

def decorator_with_arguments(function):

def wrapper_accepting_arguments(arg1, arg2):

print("My arguments are: {0}, {1}".format(arg1,arg2))

function(arg1, arg2)

return wrapper_accepting_arguments

@decorator_with_arguments

def cities(city_one, city_two):

print("Cities I love are {0} and {1}".format(city_one,
city_two))

cities("Nairobi", "Accra")

Sometimes we might need to define a decorator that
accepts arguments. We achieve this by
passing the
arguments to the wrapper function. The arguments will
then be passed to the function
that is being decorated at
call time.

● Accepting Arguments in Decorator Functions

tutort academyCurated by

Let's see how we'd use the decorator using positional
arguments.

def
a_decorator_passing_arbitrary_arguments(function
_to_decorate):

def
a_wrapper_accepting_arbitrary_arguments(*args,**
kwargs):

print('The positional arguments are', args)

print('The keyword arguments are', kwargs)

function_to_decorate(*args)

return a_wrapper_accepting_arbitrary_arguments

@a_decorator_passing_arbitrary_arguments

def function_with_no_argument():

print("No arguments here.")

function_with_no_argument()

The positional arguments are ()

The keyword arguments are {}

No arguments here.

To define a general purpose decorator that can be applied
to any function we use args and
**kwargs. args and
**kwargs collect all positional and keyword arguments and
store them in the
args and kwargs variables. args and
kwargs allow us to pass as many arguments as we would

like during function calls.

● Defining General Purpose Decorators

tutort academyCurated by

Keyword arguments are passed using keywords. An
illustration of this is shown below.

The positional arguments are ()
The keyword
arguments are {'first_name': 'Derrick', 'last_name':
'Mwiti'}
This has shown keyword arguments

● Passing Arguments to the Decorator

Now let's see how we'd pass arguments to the decorator
itself. In order to achieve this, we define
a decorator maker
that accepts arguments then defines a decorator inside it.
We then define a
wrapper function inside the decorator as
we did earlier.

@a_decorator_passing_arbitrary_arguments

def function_with_arguments(a, b, c):

print(a, b, c)

function_with_arguments(1,2,3)

The positional arguments are (1, 2, 3)

The keyword arguments are {}

1 2 3

@a_decorator_passing_arbitrary_arguments

def function_with_keyword_arguments():

print("This has shown keyword arguments")

function_with_keyword_arguments(first_name="Der
rick", last_name="Mwiti")

tutort academyCurated by

def decorator_maker_with_arguments(decorator_arg1,
decorator_arg2, decorator_arg3):

def decorator(func):

def wrapper(function_arg1, function_arg2, function_arg3)
:

"This is the wrapper function"

print("The wrapper can access all the variables\n"

"\t- from the decorator maker: {0} {1} {2}\n"

"\t- from the function call: {3} {4} {5}\n"

"and pass them to the decorated function"

.format(decorator_arg1, decorator_arg2,decorator_arg3,

function_arg1, function_arg2,function_arg3))

return func(function_arg1, function_arg2,function_arg3)

return wrapper

return decorator

pandas = "Pandas"

@decorator_maker_with_arguments(pandas,
"Numpy","Scikit-learn")

def decorated_function_with_arguments(function_arg1,
function_arg2,function_arg3):

print("This is the decorated function and it only knows
about its arguments: {0}"

" {1}" " {2}".format(function_arg1,
function_arg2,function_arg3))

decorated_function_with_arguments(pandas, "Science",
"Tools")

tutort academyCurated by

The wrapper can access all the variables

- from the decorator maker: Pandas Numpy Scikit-learn

- from the function call: Pandas Science Tools

and pass them to the decorated function

This is the decorated function, and it only knows about its
arguments: Pandas Science Tools

In order to solve this challenge Python provides a
functools.wraps decorator. This decorator
copies the lost
metadata from the undecorated function to the decorated
closure. Let's show how
we'd do that.

● Debugging Decorators

As we have noticed, decorators wrap functions. The
original function name, its docstring, and
parameter list
are all hidden by the wrapper closure: For example, when
we try to access the decorated_function_with_arguments
metadata, we'll see the wrapper closure's metadata. This

presents a challenge when debugging.

decorated_function_with_arguments.__name__

'wrapper'

decorated_function_with_arguments.__doc__

'This is the wrapper function'

tutort academyCurated by

When we check the say_hi metadata, we notice that it is
now referring to the function's metadata

and not the wrapper's metadata.

say_hi.__name__

'say_hi'

say_hi.__doc__

'This will say hi'

It is advisable and good practice to always use
functools.wraps when defining decorators. It will
save you
a lot of headache in debugging.

import functools

def uppercase_decorator(func):

@functools.wraps(func)

def wrapper():

return func().upper()

return wrapper

@uppercase_decorator

def say_hi():

"This will say hi"

return 'hello there'

say_hi()

'HELLO THERE'

tutort academyCurated by

● Python Decorators Summary

Decorators dynamically alter the functionality of a
function, method, or class without having to
directly use
subclasses or change the source code of the function
being decorated. Using
decorators in Python also ensures
that your code is DRY(Don't Repeat Yourself). Decorators
have
several use cases such as:

Authorization in Python frameworks such as Flask and
Django

Logging

Measuring execution time

Synchronization

Question 60
What are Python Modules?

Files containing Python codes are referred to as Python
Modules. This code can either be

classes, functions, or variables and saves the
programmer time by providing the predefined

functionalities when needed. It is a file with “.py”
extension containing an executable code.

Commonly used built modules are listed below:

os

sys

data time

math

random

JSON

tutort academyCurated by

Question 61

What is pep 8?

Question 62

What are Python packages?

Question 63

What are the popular Python libraries used
in Data analysis?

PEP in Python stands for Python Enhancement Proposal.
It is a set of rules that specify how to
write and design
Python code for maximum readability.

A Python package refers to the collection of different
sub-packages and modules based on the
similarities of
the function.

Some of the popular libraries of Python used for Data
analysis are:

Pandas: Powerful Python Data Analysis Toolkit

Seaborn: This is a statistical data visualization library in
Python.

SciKit: This is a machine learning library in Python.

SciPy: This is an open source system for science,
mathematics and engineering implemented in Python.

tutort academyCurated by

Question 64
What is the difference between append()
and extend() methods?

Both append() and extend() methods are methods
used to add elements at the end of a list.

append(element): Adds the given element at the end of
the list that called this append() method

extend(another-list): Adds the elements of another list
at the end of the list that called this

extend() method

Python lets users include a description (or quick notes) for
their methods using documentation
strings or docstrings.
Docstrings are different from regular comments in Python
as, rather than
being completely ignored by the Python
Interpreter like in the case of comments, these are
defined
within triple quotes.

Question 65
What is docstring in Python?

Using docstring as a comment.

This code add two numbers

"""

x=7

y=9

z=x+y

print(z)

tutort academyCurated by

Question 66
How is Multithreading achieved in Python?

Question 67
What are the common built-in data types in
Python?

Python has a multi-threading package ,but commonly
not considered as good practice to use it as
it will result
in increased code execution time.
Python has a
constructor called the Global Interpreter Lock (GIL). The
GIL ensures that only one
of your ‘threads’ can execute
at one time.The process makes sure that a thread
acquires the GIL,
does a little work, then passes the GIL
onto the next thread.
This happens at a very Quick
instance of time and that’s why to the human eye it
seems like your
threads are executing parallely, but in
reality they are executing one by one by just taking
turns
using the same CPU core.

Python supports the below-mentioned built-in data
types:

Immutable data types:
Number , String, Tuple

Mutable data types:
List, Dictionary, Set

tutort academyCurated by

Question 68
What is the difference between split() and
slicing in Python?

Question 69
How can you randomize the items of a list in
place in Python?

Both split() function and slicing work on a String object.
By using split() function, we can get the list
of words
from a String.

E.g. 'a b c '.split() returns [‘a’, ‘b’, ‘c’]

Slicing is a way of getting substring from a String. It
returns another String.

E.g. >>> 'a b c'[2:3] returns b

This can be easily achieved by using the Shuffle()
function from the random library as shown
below:

Output: [‘Loves’,’He’ ,’To ,’In’, ‘Python’,’Code’]

from random import shuffle

List = ['He', 'Loves', 'To', 'Code', 'In', 'Python']

shuffle(List)

print(List)

tutort academyCurated by

Question 70

What are negative indexes and why are they
used?

To access an element from ordered sequences, we
simply use the index of the element, which is

the position number of that particular element. The
index usually starts from 0, i.e., the first

element has index 0, the second has 1, and so on.

Python Indexing

When we use the index to access elements from the end
of a list, it’s called reverse indexing. In

reverse indexing, the indexing of elements starts from
the last element with the index number ‘−1’.

The second last element has index ‘−2’, and so on. These
indexes used in reverse indexing are

called negative indexes.

Guaranteed

Job Referrals

Highest

CTC100% Hiring

Partners250+ 2.1CR

Why Tutort Academy?

tutort academyCurated by

Question 71
Explain split(), sub(), subn() methods of “re”
module in Python?

These methods belong to the Python RegEx or ‘re’
module and are used to modify strings.

split(): This method is used to split a given string into a
list.

sub(): This method is used to find a substring where a
regex pattern matches, and then it
replaces the
matched substring with a different string.

subn(): This method is similar to the sub() method, but
it returns the new string, along with the

number of replacements.

Tutort Provides Special support for foreign students

tutort academyCurated by

Question 72
What is a map function in Python?

The map() function in Python has two parameters,
function and iterable. The map() function takes

a function as an argument and then applies that
function to all the elements of an iterable, passed

to it as another argument. It returns an object list of
results.

def calculateSq(n):

return n*n

numbers = (2, 3, 4, 5)

result = map(calculateSq, numbers)

print(result)

tutort academyCurated by

Question 73
Explain all file processing modes supported
in Python?

Python has various file processing modes.

For opening files, there are three modes:

For opening a text file using the above modes, we will
have to append ‘t’ with them as follows:

read-only mode (r)

write-only mode (w)

read–write mode (rw)

read-only mode (rt)

write-only mode (wt)

read–write mode (rwt)

tutort academyCurated by

Similarly, a binary file can be opened by appending ‘b’
with them as follows:

To append the content in the files, we can use the
append mode (a):

For text files, the mode would be ‘at’

For binary files, it would be ‘ab’

To remove duplicate elements from the list we use the
set() function.

Consider the below example:

read-only mode (rb)

write-only mode (wb)

read–write mode (rwb)

Question 74
How will you remove duplicate elements
from a list?

demo_list=[5,4,4,6,8,12,12,1,5]

unique_list = list(set(demo_list))

output:[1,5,6,8,12]

tutort academyCurated by

Question 75
How will you read a random line in a file?

Question 76
How can files be deleted in Python?

We can read a random line in a file using the random
module.

For example:

You need to import the OS Module and use os.remove()
function for deleting a file in python.

consider the code below:

import os

os.remove("file_name.txt")

import random

def read_random(fname):

lines = open(fname).read().splitlines()

return random.choice(lines)

print(read_random (‘hello.txt’))

tutort academyCurated by

Question 77
How can you generate random numbers in
Python?

Question 78
What is slicing in Python?

This is achieved with importing the random module,it is
the module that is used to generate

random numbers.

Syntax:

Slicing is a process used to select a range of elements
from sequence data type like list, string
and tuple.
Slicing is beneficial and easy to extract out the
elements. It requires a : (colon) which
separates the
start index and end index of the field. All the data
sequence types List or tuple
allows us to use slicing to
get the needed elements. Although we can get
elements by specifying
an index, we get only a single
element whereas using slicing we can get a group or
appropriate
range of needed elements.

Syntax - List_name[start:stop]

import random

random.random # returns the floating point
random number between the range of [0,1].

tutort academyCurated by

Question 79
Define Constructor in Python?

Constructor is a special type of method with a block of
code to initialize the state of instance
members of the
class. A constructor is called only when the instance of
the object is created. It is
also used to verify that they
are sufficient resources for objects to perform a specific
task.

There are two types of constructors in Python, and they
are:

● Parameterized constructor

● Non-parameterized constructor

Courses Offered by Tutort Academy

Full Stack Data
Science

(AI & ML)

Data Science &
Machine Learning

Learn more Learn more

tutort academyCurated by

Question 80
How can we create a constructor in Python
programming?

The _init_ method in Python stimulates the constructor
of the class. Creating a constructor in

Python can be explained clearly in the below example.

Output:

ID: 1

Name: nirvi

ID: 106

Name: Tanvi

class Student:

def __init__(self,name,id):

self.id = id;

self.name = name;

def display (self):

print("ID: %d nName: %s"%(self.id,self.name))

stu1 =Student("nirvi",105)

stu2 = Student("tanvi",106)

#accessing display() method to print employee
1 information

stu1.display();

#accessing display() method to print employee
2 information

stu2.display();

www.tutort.net

Explore More

Explore our courses

Follow us on

Watch us on Youtube Read more on Quora

Start Your
Upskilling with us

Data Science & Machine
Learning

Full Stack Data Science

(AI & ML)

	Frame 1000000997
	Frame 1000001077
	Frame 1000001079
	Frame 1000001080
	Frame 1000001081
	Frame 1000001084
	Frame 1000001087
	Frame 1000001088
	Frame 1000001089
	Frame 1000001090
	Frame 1000001091
	Frame 1000001092
	Frame 1000001093
	Frame 1000001094
	Frame 1000001095
	Frame 1000001096
	Frame 1000001097
	Frame 1000001098
	Frame 1000001099
	Frame 1000001100
	Frame 1000001101
	Frame 1000001102
	Frame 1000001103
	Frame 1000001104
	Frame 1000001105
	Frame 1000001106
	Frame 1000001107
	Frame 1000001108
	Frame 1000001109
	Frame 1000001110
	Frame 1000001111
	Frame 1000001112
	Frame 1000001113
	Frame 1000001114
	Frame 1000001115
	Frame 1000001116
	Frame 1000001117
	Frame 1000001118
	Frame 1000001119
	Frame 1000001120
	Frame 1000001121
	Frame 1000001122
	Frame 1000001123
	Frame 1000001124
	Frame 1000001125
	Frame 1000001126
	Frame 1000001127
	Frame 1000001128
	Frame 1000001129
	Frame 1000001130
	Frame 1000001131
	Frame 1000001132
	Frame 1000001133
	Frame 1000001134
	Frame 1000001135
	Frame 1000001136
	Frame 1000001137
	Frame 1000001138
	Frame 1000001139
	Frame 1000001140
	Frame 1000001141
	Frame 1000001142
	Frame 1000001143
	Frame 1000001144
	Frame 1000001145
	Frame 1000001146
	Frame 1000001147
	Frame 1000001148

